博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
POJ 3259 Wormholes(Bellman-ford判断负环)
阅读量:6209 次
发布时间:2019-06-21

本文共 2940 字,大约阅读时间需要 9 分钟。

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, F. F farm descriptions follow.
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2.. M+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2.. M+ W+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output
Lines 1.. F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).
Sample Input
2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8
Sample Output
NO
YES
Hint
For farm 1, FJ cannot travel back in time.
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

题意:

通过虫洞可以返回N年前,判断从某个点出发能不能回到从前,其实就是判断有没有负环。

题解:

Bellman-Ford算法,如果图中不存在负圈,那么最短路不会经过同一个顶点两次(最多通过V-1条边),把d[i]初始化为0,就可以判断所有的负环了。

#include
#include
#include
using namespace std;const int maxn=505,INF=0x3f3f3f3f;int d[maxn];int n,m;int cnt;struct edge{ int u,v,cost;}es[maxn*maxn];bool find_negative_loop(){ memset(d,0,sizeof(d)); for(int i=0;i
d[e.u]+e.cost) { d[e.v]=d[e.u]+e.cost; if(i==n-1) return true; } } return false;}int main(){ int t; cin>>t; while(t--) { int q; cin>>n>>m>>q; cnt=0; for(int i=0;i
>a>>b>>c;//反向的边也要存储 es[cnt].u=es[cnt+1].v=a; es[cnt].v=es[cnt+1].u=b; es[cnt].cost=es[cnt+1].cost=c; cnt+=2; } for(int i=0;i
>es[cnt].u>>es[cnt].v>>es[cnt].cost;//添加负权边 es[cnt++].cost*=-1; } if(find_negative_loop()) cout<<"YES"<

转载于:https://www.cnblogs.com/orion7/p/7773889.html

你可能感兴趣的文章
vue-router路径计算问题
查看>>
CvIntHaarClassifier
查看>>
二型错误和功效(Type II Errors and Test Power)
查看>>
赵雅智_Android案例_刮刮乐
查看>>
android中文网站
查看>>
新搭建项目时需要修改的内容
查看>>
Nexus 5刷阿里云OS
查看>>
深入浅出Redis(二)高级特性:事务
查看>>
python+Eclipse+pydev环境搭建
查看>>
Oracle 后台进程介绍
查看>>
Kibana常用命令
查看>>
浅谈微服务的来龙去脉
查看>>
Nginx系列(四)--工作原理
查看>>
hdu 2066 一个人的旅行
查看>>
Android Studio 导出APK
查看>>
Android开发之BUG专讲:入门篇(一)
查看>>
leetCode(32):Power of Two
查看>>
两数之和等于目标值
查看>>
《转》八大算法详细讲解
查看>>
Git进阶用法
查看>>